%I
%S 1,0,1,1,3,9,10,66,135,395,396,4344,4345,56471,56486,56478,112957,
%T 1920251,1920252,36484768,36484789,36484767,36484768,839149640,
%U 839149645,4195748199,4195748208,12587244596,12587244597,365030093283,365030093284
%N a(n) = (1/s(1)  1/s(2) + ... + d/s(n+1)) * LCM{1, 2, ..., n}, where d = (1)^n, s = A002944, i.e., s(k) = LCM of row k of Pascal's triangle.
%F a(n) = A003418(n) * Sum_{k=1..n+1} (1)^(k+1)/A002944(k).  _Sean A. Irvine_, Sep 04 2019
%K nonn
%O 0,5
%A _Clark Kimberling_
%E Title improved by _Sean A. Irvine_, Sep 04 2019
